ARTICLE

NANOPARTICLES INDUCED OXIDATIVE STRESS A REVIEW BASED APPROACH

05 Pages : 57-66

http://dx.doi.org/10.31703/gdddr.2021(VI-IV).05      10.31703/gdddr.2021(VI-IV).05      Published : Dec 2021

Nanoparticles Induced Oxidative Stress: A Review Based Approach

    Nanotechnology, a rapidly evolving science, has generated game-changing breakthroughs in the industrial, medical, and consumer industries. Engineered nano particles (NP) are extremely attractive in a range of applications due to their unique physio chemical and electrical characteristics. Changes in Np's structural and physio chemical properties can alter their biologically active compounds, along with the generation of free radicals (ROS), one of the most widely documented Nano particle-related toxins. Cellular parameters such as surface of the particle, size, contents of composition, and metal content produce oxidative stress, whereas cellular responses such as mitochondrial functions, Nano materials cell contact, and immune cell activation cause ROS-mediated destruction. It's crucial to understand how NP influences the ROS response although the oxidative stress is a key predictor of Nano particle induced damage. It may be possible to develop a comprehensive toxicity screen that uses oxidative stress as a prediction model for nano particle damage, as well as a better understanding of the multiple signalling cascades activated by nano materials ROS.

    Engineered Nanoparticles, Oxidative Stress, Physicochemical Characteristics, Reactive Oxygen Species (ROS)
    (1) Maria Naz Bakhtiari
    PhD Scholar, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (2) Najam ul Hassan
    PhD Scholar, Quaid-i-Azam University, Islamabad, Pakistan
    (3) Rashida Parveen
    Superior university, Lahore, Punjab, Pakistan
    (4) Gul Shahnaz
    Department of Pharmacy, Faculty of Biological Sciences Quaid-i-Azam University, Islamabad, Pakistan
  • Akçay, T., Saygılı, I., Andican, G., & Yalçın, V. (2003). Increased formation of 8-hydroxy-2'- deoxyguanosine in peripheral blood leukocytes in bladder cancer. Urologia internationalis, 71(3), 271-274
  • Benov, L., Sztejnberg, L., & Fridovich, I. (1998). Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free radical Biology and medicine, 25(7), 826-831.
  • Bonner, J. C. (2007). Lung fibrotic responses to particle exposure. Toxicologic pathology, 35(1), 148-153.
  • Donaldson, K., Murphy, F. A., Duffin, R., & Poland, C. A. (2010). Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Particle and fibre toxicology, 7(1), 1-17.
  • Driscoll, K. E., Howard, B. W., Carter, J. M., Janssen, Y. M., Mossman, B. T., & Isfort, R. J. (2001). Mitochondrial-derived oxidants and quartz activation of chemokine gene expression Biological Reactive Intermediates VI, 489-496
  • Fadeel, B., & Kagan, V. E. (2003). Apoptosis and macrophage clearance of neutrophils: regulation by reactive oxygen species. Redox Report, 8(3), 143-150.
  • Finaud, J., Lac, G., & Filaire, E. (2006). Oxidative Stress. Sports Medicine, 36(4), 327-358. doi: 10.2165/00007256-200636040-00004
  • Fubini, B., & Hubbard, A. (2003). Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free radical Biology and medicine, 34(12), 1507-1516.
  • Halliwell, B., & Gutteridge, J. M. (1986). Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Archives of biochemistry and biophysics, 246(2), 501-514.
  • He, X., Young, S.-H., Schwegler-Berry, D., Chisholm, W. P., Fernback, J. E., & Ma, Q. (2011). Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF- κB signaling, and promoting fibroblast-to- myofibroblast transformation. Chemical research in toxicology, 24(12), 2237-2248.
  • Hsin, Y.-H., Chen, C.-F., Huang, S., Shih, T.-S., Lai, P.-S., & Chueh, P. J. (2008). The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology letters, 179(3), 130-139.
  • Huang, C.-C., Aronstam, R. S., Chen, D.-R., & Huang, Y.-W. (2010). Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicology in vitro, 24(1), 45-55.
  • Huang, Y.-W., Wu, C.-h., & Aronstam, R. S. (2010). Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials, 3(10), 4842-4859.
  • Ju-Nam, Y., & Lead, J. R. (2008). Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Science of the total environment, 400(1-3), 396-414.
  • Kennedy, I. M., Wilson, D., & Barakat, A. I. (2009). Uptake and inflammatory effects of nanoparticles in a human vascular endothelial cell line. Research Report (Health Effects Institute) 136, 3-32.
  • Knaapen, A. M., Borm, P. J., Albrecht, C., & Schins, R. P. (2004). Inhaled particles and lung cancer. Part A: Mechanisms. International Journal of Cancer, 109(6), 799- 809.
  • Lam, C.-W., James, J. T., McCluskey, R., & Hunter, R. L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological sciences, 77(1), 126-134.
  • Le Goff, A., Holzinger, M., & Cosnier, S. (2011). Enzymatic biosensors based on SWCNT- conducting polymer electrodes. Analyst, 136(7), 1279-1287.
  • Lenaz, G. (2001). The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB life, 52(3-5), 159-164.
  • Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A.-G., . . . Stadtman, E. R. (1990). [49] Determination of carbonyl content in oxidatively modified proteins Methods in enzymology 186, pp. 464-478): Elsevier.
  • Li, J. J. e., Muralikrishnan, S., Ng, C.-T., Yung, L.- Y. L., & Bay, B.-H. (2010). Nanoparticle- induced pulmonary toxicity. Experimental biology and medicine, 235(9), 1025-1033.
  • Marnett, L. J. (1987). Peroxyl free radicals: potential mediators of tumor initiation and promotion. Carcinogenesis, 8(10), 1365- 1373.
  • Marshall, P. J., Warso, M. A., & Lands, W. E. (1985). Selective microdetermination of lipid hydroperoxides. Analytical biochemistry, 145(1), 192-199.
  • McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological chemistry, 244(22), 6049-6055.
  • Mesquita, C. S., Oliveira, R., Bento, F., Geraldo, D., Rodrigues, J. V., & Marcos, J. C. (2014). Simplified 2, 4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Analytical biochemistry, 458, 69-71.
  • Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. science, 311(5761), 622-627.
  • Park, E.-J., Choi, J., Park, Y.-K., & Park, K. (2008). Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology, 245(1-2), 90-100.
  • Risom, L., Møller, P., & Loft, S. (2005). Oxidative stress-induced DNA damage by particulate air pollution. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 592(1-2), 119- 137.
  • Sattler, K. D. (2010). Cell Oxidative Stress: Risk of Metal Nanoparticles Handbook of Nanophysics 275-292
  • Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current biology, 24(10), R453-R462.
  • Shvedova, A. A., Kisin, E., Murray, A. R., Johnson, V. J., Gorelik, O., Arepalli, S., . . . Sussman, N. (2008). Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 295(4), L552-L565.
  • Shvedova, A. A., Pietroiusti, A., Fadeel, B., & Kagan, V. E. (2012). Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicology and applied pharmacology, 261(2), 121-133.
  • Sies, H. (1991). Oxidative stress: introduction. Oxidative stress: oxidants and antioxidants, 15-21.
  • Sioutas, C., Delfino, R. J., & Singh, M. (2005). Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environmental Health Perspectives, 113(8), 947-955.
  • Stellaa, G. M. (2011). Carbon nanotubes and pleural damage: perspectives of nanosafety in the light of asbestos experience. Biointerphases, 6(2), P1-P17.
  • Thannickal, V. J., & Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. American Journal of Physiology-Lung Cellular and Molecular Physiology, 279(6), L1005-L1028.
  • Trotti, R., Carratelli, M., & Barbieri, M. (2002). Performance and clinical application of a new, fast method for the detection of hydroperoxides in serum. Panminerva Medica, 44(1), 37-40.
  • Ubezio, P., & Civoli, F. (1994). Flow cytometric detection of hydrogen peroxide production induced by doxorubicin in cancer cells. Free radical Biology and medicine, 16(4), 509-516.
  • Valko, M., Rhodes, C., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological interactions, 160(1), 1-40.
  • Vallyathan, V., & Shi, X. (1997). The role of oxygen free radicals in occupational and environmental lung diseases. Environmental Health Perspectives, 105(suppl 1), 165-177.
  • Warheit, D. B., Laurence, B. R., Reed, K. L., Roach, D. H., Reynolds, G. A., & Webb, T. R. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicological sciences, 77(1), 117-125.
  • Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., . . . Nel, A. E. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano letters, 6(8), 1794- 1807.
  • Zhang, Z., Berg, A., Levanon, H., Fessenden, R. W., & Meisel, D. (2003). On the interactions of free radicals with gold nanoparticles. Journal of the American Chemical Society, 125(26), 7959-7963.

Cite this article

    APA : Bakhtiari, M. N., Hassan, N. u., & Parveen, R. (2021). Nanoparticles Induced Oxidative Stress: A Review Based Approach. Global Drug Design & Development Review, VI(IV), 57-66. https://doi.org/10.31703/gdddr.2021(VI-IV).05
    CHICAGO : Bakhtiari, Maria Naz, Najam ul Hassan, and Rashida Parveen. 2021. "Nanoparticles Induced Oxidative Stress: A Review Based Approach." Global Drug Design & Development Review, VI (IV): 57-66 doi: 10.31703/gdddr.2021(VI-IV).05
    HARVARD : BAKHTIARI, M. N., HASSAN, N. U. & PARVEEN, R. 2021. Nanoparticles Induced Oxidative Stress: A Review Based Approach. Global Drug Design & Development Review, VI, 57-66.
    MHRA : Bakhtiari, Maria Naz, Najam ul Hassan, and Rashida Parveen. 2021. "Nanoparticles Induced Oxidative Stress: A Review Based Approach." Global Drug Design & Development Review, VI: 57-66
    MLA : Bakhtiari, Maria Naz, Najam ul Hassan, and Rashida Parveen. "Nanoparticles Induced Oxidative Stress: A Review Based Approach." Global Drug Design & Development Review, VI.IV (2021): 57-66 Print.
    OXFORD : Bakhtiari, Maria Naz, Hassan, Najam ul, and Parveen, Rashida (2021), "Nanoparticles Induced Oxidative Stress: A Review Based Approach", Global Drug Design & Development Review, VI (IV), 57-66
    TURABIAN : Bakhtiari, Maria Naz, Najam ul Hassan, and Rashida Parveen. "Nanoparticles Induced Oxidative Stress: A Review Based Approach." Global Drug Design & Development Review VI, no. IV (2021): 57-66. https://doi.org/10.31703/gdddr.2021(VI-IV).05