http://dx.doi.org/10.31703/gdddr.2021(VI-IV).04
10.31703/gdddr.2021(VI-IV).04
Published : Dec 2021
Nanoparticles Targeted Drug Delivery in Lung Cancer
Lung cancer is one of the top most leading cancers in the world. Nano-scale size dependent properties of the nano particles revolutionized the targeted therapy for the lung cancer. Nasal drug delivery of the nano particle aid in enhancing the effect at targeted site. Vascularization, large surfaced area and rapid disposition of drug nano particles is encouraging toward the inhalable drug delivery. The main purpose of the review is to gather the recent literature work in the area of nano particle uses in lung cancer and work on the development of targeted drug deliveryples.
-
Lung cancer, Targeted Drug Delivery, Inhalable Nanoparticles, Nanocarriers, Nano- formulations
-
(1) Shahrukh Asif
Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan.
(2) Sidra Altaf
Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan.
(3) Asma Kaleem
Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan.
- Essa, M. L., El-Kemary, M. A., Ebrahem Saied, E. M., Leporatti, S., & Nemany Hanafy, N. A. (2020). Nano targeted Therapies Made of Lipids and Polymers have Promising Strategy for the Treatment of Lung Cancer. Materials (Basel, Switzerland), 13(23), 5397. https://doi.org/10.3390/ma13235397
- Norouzi, M., & Hardy, P. (2020). Clinical applications of nanomedicines in lung cancer treatment. Acta biomaterialia, S1742-7061(20)30723-6. Advance online publication. https://doi.org/10.1016/j.actbio.2020.12.0 09
- Zheng, D., Wang, J., Guo, S., Zhao, Z., & Wang, F. (2018). Formulations, Pharmacodynamic and Clinical Studies of Nanoparticles for Lung Cancer Therapy - An Overview. Current drug metabolism, 19(9), 759- 767. https://doi.org/10.2174/138920021966618 0305145345
- Yu, H. P., Aljuffali, I. A., & Fang, J. Y. (2017). Injectable Drug-Loaded Nanocarriers for Lung Cancer Treatments. Current pharmaceutical design, 23(3), 481-494. https://doi.org/10.2174/138161282266616 1027113654
- V, R., Pal, K., Zaheer, T., Kalarikkal, N., Thomas, S., de Souza, F. G., & Si, A. (2020). Gold nanoparticles against respiratory diseases: oncogenic and viral pathogens review. Therapeutic delivery, 11(8), 521-534. https://doi.org/10.4155/tde-2020-0071
- Mukherjee, A., Paul, M., & Mukherjee, S. (2019). Recent Progress in the Theranostics Application of Nanomedicine in Lung Cancer. Cancers, 11(5), 597. https://doi.org/10.3390/cancers11050 597
- Cryer, A. M., & Thorley, A. J. (2019). Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacology & therapeutics, 198, 189-205. https://doi.org/10.1016/j.pharmthera.2019 .02.010
- Gidwani, K., Kekki, H., Terävä, J., Soukka, T., Sundfeldt, K., & Pettersson, K. (2020). Nanoparticle-aided glycovariant assays to bridge biomarker performance and ctDNA results. Molecular aspects of medicine, 72, 100831. https://doi.org/10.1016/j.mam.2019.11.001
- Wang, X., Chen, H., Zeng, X., Guo, W., Jin, Y., Wang, S., Tian, R., Han, Y., Guo, L., Han, J., Wu, Y., & Mei, L. (2019). Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta pharmaceutica Sinica. B, 9(1), 167-176. https://doi.org/10.1016/j.apsb.2018.08.006
- Hu, L., Jia, Y., & WenDing (2010). Preparation and characterization of solid lipid nanoparticles loaded with epirubicin for pulmonary delivery. Die Pharmazie, 65(8), 585-587.
- Joshi, N., Shirsath, N., Singh, A., Joshi, K. S., & Banerjee, R. (2014). Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases. Scientific reports, 4, 7085. https://doi.org/10.1038/srep07085
- Klębowski, B., Depciuch, J., Parlińska- Wojtan, M., & Baran, J. (2018). Applications of Noble Metal-Based Nanoparticles in Medicine. International journal of molecular sciences, 19(12), 4031. https://doi.org/10.3390/ijms19124031
- Chis, A. A., Dobrea, C., Morgovan, C., Arseniu, A. M., Rus, L. L., Butuca, A., Juncan, A. M., Totan, M., Vonica- Tincu, A. L., Cormos, G., Muntean, A. C., Muresan, M. L., Gligor, F. G., & Frum, A. (2020). Applications and Limitations of Dendrimers in Biomedicine. Molecules (Basel, Switzerland), 25(17), 3982. https://doi.org/10.3390/molecules251739 82
- Musthaba, S. M., Baboota, S., Ahmed, S., Ahuja, A., & Ali, J. (2009). Status of novel drug delivery technology for phytotherapeutics. Expert opinion on drug delivery, 6(6), 625-637. https://doi.org/10.1517/17425240902 980154
- Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International journal of nanomedicine, 10, 975-999. https://doi.org/10.2147/IJN.S68861
- Fried, D. B., Morris, D. E., Poole, C., Rosenman, J. G., Halle, J. S., Detterbeck, F. C., Hensing, T. A., & Socinski, M. A. (2004). Systematic review evaluating the timing of thoracic radiation therapy in combined modality therapy for limited-stage small-cell lung cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 22(23), 4837-4845. https://doi.org/10.1200/JCO.2004.01.178
- Boulikas T. (2004). Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncology reports, 12(1), 3- 12.
- Rasool, M., Malik, A., Manan, A., Ansari, S. A., Naseer, M. I., Qazi, M. H., Asif, M., Gan, S. H., & Kamal, M. A. (2015). Nanoparticle-Based Therapy in Genomics. Current drug metabolism, 16(5), 354-361. https://doi.org/10.2174/138920021666614 1208152121
- Rahman, M., Ahmad, M. Z., Ahmad, J., Firdous, J., Ahmad, F. J., Mushtaq, G., Kamal, M. A., & Akhter, S. (2015). Role of Graphene Nano-Composites in Cancer Therapy: Theranostic Applications, Metabolic Fate and Toxicity Issues. Current drug metabolism, 16(5), 397-409. https://doi.org/10.2174/138920021566614 1125120633
- Suarez, S., O'Hara, P., Kazantseva, M., Newcomer, C. E., Hopfer, R., McMurray, D. N., & Hickey, A. J. (2001). Airways delivery of rifampicin microparticles for the treatment of tuberculosis. The Journal of antimicrobial chemotherapy, 48(3), 431-434. https://doi.org/10.1093/jac/48.3.431
- O'Hara, P., & Hickey, A. J. (2000). Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharmaceutical research, 17(8), 955-961. https://doi.org/10.1023/a:1007527204887
- Baleeiro, R. B., Schweinlin, M., Rietscher, R., Diedrich, A., Czaplewska, J. A., Metzger, M., Lehr, C. M., Scherlieb, R., Hanefeld, A., Gottschaldt, M., & Walden, P. (2016). Nanoparticle-Based Mucosal Vaccines Targeting Tumor- Associated Antigens to Human Dendritic Cells. Journal of biomedical nanotechnology, 12(7), 1527-1543. https://doi.org/10.1166/jbn.2016.2267
- Kisich, K. O., Higgins, M. P., Park, I., Cape, S. P., Lindsay, L., Bennett, D. J., Winston, S., Searles, J., & Sievers, R. E. (2011). Dry powder measles vaccine: particle deposition, virus replication, and immune response in cotton rats following inhalation. Vaccine, 29(5), 905-912. https://doi.org/10.1016/j.vaccine.2010.10. 020
- Hanif, S. N., & Garcia-Contreras, L. (2012). Pharmaceutical aerosols for the treatment and prevention of tuberculosis. Frontiers in cellular and infection microbiology, 2, 118. https://doi.org/10.3389/fcimb.2012.00118
- van Dissel, J. T., Joosten, S. A., Hoff, S. T., Soonawala, D., Prins, C., Hokey, D. A., O'Dee, D. M., Graves, A., Thierry- Carstensen, B., Andreasen, L. V., Ruhwald, M., de Visser, A. W., Agger, E. M., Ottenhoff, T. H., Kromann, I., & Andersen, P. (2014). A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine, 32(52), 7098- 7107. https://doi.org/10.1016/j.vaccine.2014.10. 036
- Muttil, P., Prego, C., Garcia-Contreras, L., Pulliam, B., Fallon, J. K., Wang, C., Hickey, A. J., & Edwards, D. (2010). Immunization of guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route. The AAPS journal, 12(3), 330- 337. https://doi.org/10.1208/s12248-010- 9192-2
- Tonnis, W. F., Kersten, G. F., Frijlink, H. W., Hinrichs, W. L., de Boer, A. H., & Amorij, J. P. (2012). Pulmonary vaccine delivery: a realistic approach?. Journal of aerosol medicine and pulmonary drug delivery, 25(5), 249-260. https://doi.org/10.1089/jamp.2011.0931
- Videira, M., Almeida, A. J., & Fabra, A. (2012). Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine: nanotechnology, biology, and medicine, 8(7), 1208-1215. https://doi.org/10.1016/j.nano.2011.12.007
- Agashe, H., Sahoo, K., Lagisetty, P., & Awasthi, V. (2011). Cyclodextrin- mediated entrapment of curcuminoid 4-[3,5-bis(2-chlorobenzylidene-4- oxo-piperidine-1-yl)-4-oxo-2- butenoic acid] or CLEFMA in liposomes for treatment of xenograft lung tumor in rats. Colloids and surfaces. B, Biointerfaces, 84(2), 329- 337. https://doi.org/10.1016/j.colsurfb.2011.01. 023
- Li, R., Wu, W., Liu, Q., Wu, P., Xie, L., Zhu, Z., Yang, M., Qian, X., Ding, Y., Yu, L., Jiang, X., Guan, W., & Liu, B. (2013). Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PloS one, 8(7), e69643. https://doi.org/10.1371/journal.pone.0069 643
- Yao, L., Daniels, J., Wijesinghe, D., Andreev, O. A., & Reshetnyak, Y. K. (2013). pHLIP®-mediated delivery of PEGylated liposomes to cancer cells. Journal of controlled release: official journal of the Controlled Release Society, 167(3), 228-237. https://doi.org/10.1016/j.jconrel.2013.01.0 37
- Maiolino, S., Russo, A., Pagliara, V., Conte, C., Ungaro, F., Russo, G., & Quaglia, F. (2015). Biodegradable nanoparticles sequentially decorated with Polyethyleneimine and Hyaluronan for the targeted delivery of docetaxel to airway cancer cells. Journal of nanobiotechnology, 13, 29. https://doi.org/10.1186/s12951-015-0088- 2
- Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics, 5(4), 505-515. https://doi.org/10.1021/mp800051m
- Guo, Y., Wang, L., Lv, P., & Zhang, P. (2015). Transferrin-conjugated doxorubicin- loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncology letters, 9(3), 1065- 1072. https://doi.org/10.3892/ol.2014.2840
- Clawson, C., Ton, L., Aryal, S., Fu, V., Esener, S., & Zhang, L. (2011). Synthesis and characterization of lipid- polymer hybrid nanoparticles with pH-triggered poly(ethylene glycol) shedding. Langmuir: the ACS journal of surfaces and colloids, 27(17), 10556- 10561. https://doi.org/10.1021/la202123e
- Zhang, L., Feng, Q., Wang, J., Zhang, S., Ding, B., Wei, Y., Dong, M., Ryu, J. Y., Yoon, T. Y., Shi, X., Sun, J., & Jiang, X. (2015). Microfluidic Synthesis of Hybrid Nanoparticles with Controlled Lipid Layers: Understanding Flexibility-Regulated Cell- Nanoparticle Interaction. ACS nano, 9(10), 9912-9921. https://doi.org/10.1021/acsnano.5b05792
- Mandal, B., Bhattacharjee, H., Mittal, N., Sah, H., Balabathula, P., Thoma, L. A., & Wood, G. C. (2013). Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine: nanotechnology, biology, and medicine, 9(4), 474-491. https://doi.org/10.1016/j.nano.2012.11.010
- Stocke, N. A., Meenach, S. A., Arnold, S. M., Mansour, H. M., & Hilt, J. Z. (2015). Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying. International journal of pharmaceutics, 479(2), 320-328. https://doi.org/10.1016/j.ijpharm.2014.12. 050
- Zhang, L., Xue, H., Gao, C., Carr, L., Wang, J., Chu, B., & Jiang, S. (2010). Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l- alanine linkages. Biomaterials, 31(25), 6582-6588. https://doi.org/10.1016/j.biomaterials.201 0.05.018
- Lam, A. T., Yoon, J., Ganbold, E. O., Singh, D. K., Kim, D., Cho, K. H., Lee, S. Y., Choo, J., Lee, K., & Joo, S. W. (2014). Colloidal gold nanoparticle conjugates of gefitinib. Colloids and surfaces. B, Biointerfaces, 123, 61-67. https://doi.org/10.1016/j.colsurfb.2014.08. 021
- Ahmed, S., Annu, Ikram, S., & Yudha S, S. (2016). Biosynthesis of gold nanoparticles: A green approach. Journal of photochemistry and photobiology. B, Biology, 161, 141-153. https://doi.org/10.1016/j.jphotobiol.2016. 04.034
- Qian, Y., Qiu, M., Wu, Q., Tian, Y., Zhang, Y., Gu, N., Li, S., Xu, L., & Yin, R. (2014). Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Scientific reports, 4, 7490. https://doi.org/10.1038/srep07490
- Naseri, N., Valizadeh, H., & Zakeri-Milani, P. (2015). Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application. Advanced pharmaceutical bulletin, 5(3), 305-313. https://doi.org/10.15171/apb.2015.043
- Jesus, M. B., & Zuhorn, I. S. (2015). Solid lipid nanoparticles as nucleic acid delivery system: properties and molecular mechanisms. Journal of controlled release: official journal of the Controlled Release Society, 201, 1-13. https://doi.org/10.1016/j.jconrel.2015.01.0 10
- Makwana, V., Jain, R., Patel, K., Nivsarkar, M., & Joshi, A. (2015). Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach. International journal of pharmaceutics, 495(1), 439-446. https://doi.org/10.1016/j.ijpharm.2015.09. 014
- Ezzati Nazhad Dolatabadi, J., Valizadeh, H., & Hamishehkar, H. (2015). Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs. Advanced pharmaceutical bulletin, 5(2), 151-159. https://doi.org/10.15171/apb.2015.022
- Hussain, S., Plückthun, A., Allen, T. M., & Zangemeister-Wittke, U. (2007). Antitumor activity of an epithelial cell adhesion molecule targeted nanovesicular drug delivery system. Molecular cancer therapeutics, 6(11), 3019-3027. https://doi.org/10.1158/1535-7163.MCT- 07-0615
- Allen, T. M., Hansen, C., Martin, F., Redemann, C., & Yau-Young, A. (1991). Liposomes containing synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives in vivo. Biochimica et biophysica acta, 1066(1), 29-36. https://doi.org/10.1016/0005- 2736(91)90246-5
- Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: entering the mainstream. Science (New York, N.Y.), 303(5665), 1818-1822. https://doi.org/10.1126/science.1095833
- Torchilin V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature reviews. Drug discovery, 4(2), 145-160. https://doi.org/10.1038/nrd1632
- Duan, X., He, C., Kron, S. J., & Lin, W. (2016). Nanoparticle formulations of cisplatin for cancer therapy. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 8(5), 776-791. https://doi.org/10.1002/wnan.1390
- Liu, Y., Wang, Z., Liu, Y., Zhu, G., Jacobson, O., Fu, X., Bai, R., Lin, X., Lu, N., Yang, X., Fan, W., Song, J., Wang, Z., Yu, G., Zhang, F., Kalish, H., Niu, G., Nie, Z., & Chen, X. (2017). Suppressing Nanoparticle- Mononuclear Phagocyte System Interactions of Two-Dimensional Gold Nanorings for Improved Tumor Accumulation and Photothermal Ablation of Tumors. ACS nano, 11(10), 10539-10548. https://doi.org/10.1021/acsnano.7b05908
- Werner, M. E., Cummings, N. D., Sethi, M., Wang, E. C., Sukumar, R., Moore, D. T., & Wang, A. Z. (2013). Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. International journal of radiation oncology, biology, physics, 86(3), 463-468. https://doi.org/10.1016/j.ijrobp.2013.02.0 0
- Leach, C., Colice, G. L., & Luskin, A. (2009). Particle size of inhaled corticosteroids: does it matter?. The Journal of allergy and clinical immunology, 124(6 Suppl), S88-S93. https://doi.org/10.1016/j.jaci.2009.09.050
- Scherließ, R., & Etschmann, C. (2018). DPI formulations for high dose applications - Challenges and opportunities. International journal of pharmaceutics, 548(1), 49-53. https://doi.org/10.1016/j.ijpharm.2018.06. 038
- Guo, X., & Szoka, F. C., Jr (2003). Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Accounts of chemical research, 36(5), 335-341. https://doi.org/10.1021/ar9703241
- Folkman, J., & Long, D. M. (1964). The Use of Silicone Rubber as a Carrier for Prolonged Drug Therapy. The Journal of surgical research, 4, 139-142. https://doi.org/10.1016/s0022- 4804(64)80040-8
- Yokoi, K., Tanei, T., Godin, B., van de Ven, A. L., Hanibuchi, M., Matsunoki, A., Alexander, J., & Ferrari, M. (2014). Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments. Cancer letters, 345(1), 48-55. https://doi.org/10.1016/j.canlet.2013.11.01 5
- Yokoi, K., Kojic, M., Milosevic, M., Tanei, T., Ferrari, M., & Ziemys, A. (2014). Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer research, 74(16), 4239-4246. https://doi.org/10.1158/0008-5472.CAN- 13-3494
- Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., & Langer, R. (1994). Biodegradable long- circulating polymeric nanospheres. Science (New York, N.Y.), 263(5153), 1600-1603. https://doi.org/10.1126/science.8128245
- Miller, M. A., Gadde, S., Pfirschke, C., Engblom, C., Sprachman, M. M., Kohler, R. H., Yang, K. S., Laughney, A. M., Wojtkiewicz, G., Kamaly, N., Bhonagiri, S., Pittet, M. J., Farokhzad, O. C., & Weissleder, R. (2015). Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Science translational medicine, 7(314), 314ra183. https://doi.org/10.1126/scitranslmed.aac6 522
- Lammers, T., Kiessling, F., Hennink, W. E., & Storm, G. (2012). Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. Journal of controlled release =: official journal of the Controlled Release Society, 161(2), 175-187. https://doi.org/10.1016/j.jconrel.2011.09.0 63
- Xu, S., Olenyuk, B. Z., Okamoto, C. T., & Hamm-Alvarez, S. F. (2013). Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Advanced drug delivery reviews, 65(1), 121-138. https://doi.org/10.1016/j.addr.2012.09.041
- Yameen, B., Choi, W. I., Vilos, C., Swami, A., Shi, J., & Farokhzad, O. C. (2014). Insight into nanoparticle cellular uptake and intracellular targeting. Journal of controlled release: official journal of the Controlled Release Society, 190, 485-499. https://doi.org/10.1016/j.jconrel.2014.06.0 38
- Sriraman, S. K., Aryasomayajula, B., & Torchilin, V. P. (2014). Barriers to drug delivery in solid tumors. Tissue barriers, 2, e29528. https://doi.org/10.4161/tisb.29528
- Bahl, A., & Falk, S. (2001). Meta-analysis of single agents in the chemotherapy of NSCLC: what do we want to know?. British journal of cancer, 84(9), 1143-1145. https://doi.org/10.1054/bjoc.2000.1740
- Gagnadoux, F., Hureaux, J., Vecellio, L., Urban, T., Le Pape, A., Valo, I., Montharu, J., Leblond, V., Boisdron- Celle, M., Lerondel, S., Majoral, C., Diot, P., Racineux, J. L., & Lemarie, E. (2008). Aerosolized chemotherapy. Journal of aerosol medicine and pulmonary drug delivery, 21(1), 61-70. https://doi.org/10.1089/jamp.2007.0656
- Labiris, N. R., & Dolovich, M. B. (2003). Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. British journal of clinical pharmacology, 56(6), 588-599. https://doi.org/10.1046/j.1365- 2125.2003.01892.x
- Sharma, S., White, D., Imondi, A. R., Placke, M. E., Vail, D. M., & Kris, M. G. (2001). Development of inhalational agents for oncologic use. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 19(6), 1839-1847. https://doi.org/10.1200/JCO.2001.19.6.18 39
- Hershey, A. E., Kurzman, I. D., Forrest, L. J., Bohling, C. A., Stonerook, M., Placke, M. E., Imondi, A. R., & Vail, D. M. (1999). Inhalation chemotherapy for macroscopic primary or metastatic lung tumors: proof of principle using dogs with spontaneously occurring tumors as a model. Clinical cancer research: an official journal of the American Association for Cancer Research, 5(9), 2653-2659.
- Koshkina, N. V., Waldrep, J. C., Roberts, L. E., Golunski, E., Melton, S., & Knight, V. (2001). Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clinical cancer research: an official journal of the American Association for Cancer Research, 7(10), 3258-3262.
- Goel, A., Baboota, S., Sahni, J. K., & Ali, J. (2013). Exploring targeted pulmonary delivery for treatment of lung cancer. International journal of pharmaceutical investigation, 3(1), 8- 14. https://doi.org/10.4103/2230- 973X.108959
- Sheikhpour, M., Naghinejad, M., Kasaeian, A., Lohrasbi, A., Shahraeini, S. S., & Zomorodbakhsh, S. (2020). The Applications of Carbon Nanotubes in the Diagnosis and Treatment of Lung Cancer: A Critical Review. International journal of nanomedicine, 15, 7063-7078. https://doi.org/10.2147/IJN.S263238
- Paroha, S., Verma, J., Dubey, R. D., Dewangan, R. P., Molugulu, N., Bapat, R. A., Sahoo, P. K., & Kesharwani, P. (2021). Recent advances and prospects in gemcitabine drug delivery systems. International journal of pharmaceutics, 592, 120043. https://doi.org/10.1016/j.ijpharm.2020.120 043
- Wang, X., Chen, H., Zeng, X., Guo, W., Jin, Y., Wang, S., Tian, R., Han, Y., Guo, L., Han, J., Wu, Y., & Mei, L. (2019). Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta pharmaceutica Sinica. B, 9(1), 167-176. https://doi.org/10.1016/j.apsb.2018.08.006
Cite this article
-
APA : Asif, S., Altaf, S., & Kaleem, A. (2021). Nanoparticles Targeted Drug Delivery in Lung Cancer. Global Drug Design & Development Review, VI(IV), 39 - 56 . https://doi.org/10.31703/gdddr.2021(VI-IV).04
-
CHICAGO : Asif, Shahrukh, Sidra Altaf, and Asma Kaleem. 2021. "Nanoparticles Targeted Drug Delivery in Lung Cancer." Global Drug Design & Development Review, VI (IV): 39 - 56 doi: 10.31703/gdddr.2021(VI-IV).04
-
HARVARD : ASIF, S., ALTAF, S. & KALEEM, A. 2021. Nanoparticles Targeted Drug Delivery in Lung Cancer. Global Drug Design & Development Review, VI, 39 - 56 .
-
MHRA : Asif, Shahrukh, Sidra Altaf, and Asma Kaleem. 2021. "Nanoparticles Targeted Drug Delivery in Lung Cancer." Global Drug Design & Development Review, VI: 39 - 56
-
MLA : Asif, Shahrukh, Sidra Altaf, and Asma Kaleem. "Nanoparticles Targeted Drug Delivery in Lung Cancer." Global Drug Design & Development Review, VI.IV (2021): 39 - 56 Print.
-
OXFORD : Asif, Shahrukh, Altaf, Sidra, and Kaleem, Asma (2021), "Nanoparticles Targeted Drug Delivery in Lung Cancer", Global Drug Design & Development Review, VI (IV), 39 - 56
-
TURABIAN : Asif, Shahrukh, Sidra Altaf, and Asma Kaleem. "Nanoparticles Targeted Drug Delivery in Lung Cancer." Global Drug Design & Development Review VI, no. IV (2021): 39 - 56 . https://doi.org/10.31703/gdddr.2021(VI-IV).04